Index
“ ... PIC Microcontrollers Development systems
\,(on-line FREE!
Previous page Table of contents Next Page

CHAPTER 4

Assembly Language Programming

Introduction
An example writting program

Control directives

4.1 define
4.2 include
4.3 constant
4.4 variable
4.5 set

4.6 equ

4.7 org

4.8 end

Conditional instructions

® 49if
® 4.10 else
® 4.11 endif

® 4.12 while
® 4.13 endw
® 4.14 ifdef
® 4.15 ifndef

Data directives

® 4.16 cblock
® 4.17 endc
® 4.18 db

® 4.19de

® 4.20dt

Configurating a directive

® 421 CONFIG
® 4.22 Processor

Assembler arithmetic operators
Files created as a result of program translation
Macros

Introduction

The ability to communicate is of great importance in any field. However, it is only possible if both communication panmers kno

the same language, i.e follow the same rules during communication. Using these principles as a starting point, we gan also defi
communication that occurs between microcontrollers and man . Language that microcontroller and man use to communicate is
called "assembly language". The title itself has no deeper meaning, and is analogue to names of other languages , ex. English o
French. More precisely, "assembly language" is just a passing solution. Programs written in assembly language mustthe translate
into a "language of zeros and ones" in order for a microcontroller to understand it. "Assembly language" and "assembler" are tw
different notions. The first represents a set of rules used in writing a program for a microcontroller, and the otheais apitbe
personal computer which translates assembly language into a language of zeros and ones. A program that is translaist into "zer

and "ones" is also called "machine language”.

=

1
Rz raif]
1T
RAZ raofl
15
Redmockl osct]]
1=
MCLR QEC2
Pragrarn.asm Program.hes|| Programmer PIC :1L
s TRFB4d vdd[]
- 11
REOANT RET :l
1z
RE1 REG :l
11
REZ2 RE3 :l
h[+3
RE3 re4l]

The process of communication between a man and a microcontoller

Physically, Program” represents a file on the computer disc (or in the memory if it is read in a microcontroller), and is written
according to the rules of assembler or some other language for microcontroller programming. Man can understand assembler
language as it consists of alphabet signs and words. When writing a program, certain rules must be followed in order to reach a
desired effect. Arranslator interprets each instruction written in assembly language as a series of zeros and ones which have a
meaning for the internal logic of the microcontroller.

Lets take for instance the instruction "RETURN" that a microcontroller uses to return from a sub-program.

When the assembler translates it, we get a 14-bit series of zeros and ones which the microcontroller knows how to interpret.

Example: RETURN 00 0000 0000 1000

Similar to the above instance, each assembler instruction is interpreted as corresponding to a series of zeros and ones.

The place where this translation of assembly language is found, is called an "execution” file. We will often meet the name "HEX
file. This name comes from a hexadecimal representation of that file, as well as from the suffix "hex" in the title hex""test.

Once it is generated, the execution file is read in a microcontroller through a programmer.

An Assembly Languageprogram is written in a program for text processing (editor) and is capable of producing an ASCII file on
the computer disc or in specialized surroundings such as MPLAB - to be explained in the next chapter.

Assembly language

Basic elements of assembly language are:

® |abels

® |Instructions
® Operands
® Directives
® Comments

Labels

A Label is a textual designation (generally an easy-to-read word) for a line in a program, or section of a program where the micro
can jump to - or even the beginning of set of lines of a program. It can also be used to execute program branching (such as Got
.......) and the program can even have a condition that must be met for the Goto instruction to be executed. It is ingptakaht fo

to start with a letter of the alphabet or with an underline "_". The length of the label can be up to 32 charactersnmpi et

that a label starts in the first clumn.

first column —| Y

Correctly written labels

Start
_end
P123
I=_it_higger?

Incorrectly written labels

Start - does naot bedin in first column
2_end - heding with a number!

Instructions

Instructions are already defined by the use of a specific microcontroller, so it only remains for us to follow the induttieins
use in assembly language. The way we write an instruction is also called instruction "syntax". In the following example, we can

recognize a mistake in writing because instructions movlp and gotto do not exist for the PIC16F84 microcontroller.

Correctly written instructions

oy | H'O1FF
goto Start

Incorrectly written instructions

movip H'O1FF
gotta Start

Operands

Operands are the instruction elements for the instruction is being executed. They areagigtdhg or variables or constants

Typical operands

moviw H'FF "
movwf LEVEL

Operand as a

variable LEYEL in Operand as a
the memory of a hexadecimal
microcontraller number

Comments

Commentis a series of words that a programmer writes to make the program more clear and legible. It is placed after an instruction,
and must start with a semicolon ";".

Directives

A directive is similar to an instruction, but unlike an instruction it is independent on the microcontroller model, and represents a
characteristic of the assembly language itself. Directives are usually given purposeful meanings via variables or registers. Fo
example, LEVEL can be a designation for a variable in RAM memory at address ODh. In this way, the variable at that address can

be accessed via LEVEL designation. This is far easier for a programmer to understand than for him to try to rememberhaddress 0D
contains information about LEVEL.

Some frequently used directives:

PROCESSOR 16F34
#include “p16f84i.inc™

__CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_0SC

An example of a writting program

The following example illustrates a simple program written in assembly language respecting the basic rules.

When writing a program, beside mandatory rules, there are also some rules that are not written down but need to be fellowed. On
of them is to write the name of the program at the beginning, what the program does, its version, date when it was evdften, typ
microcontroller it was written for, and the programmer’s name.

Basic

infarmation ; Prograrm faor initialization of port B and setting pins to status of logic one
on the ®—; Version 1.0 Date: 10.10.1999, MCULPIC16F34 Written by: John Smith
program

; Declaration and configuration of a processor
PROCESSOR 16F84
#include “p16fB4.Inc™ ; Processor title

Directive = — CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_0SC
i Start of program
oryg I]xl?l]) Reset vector
goto Main : Go to the beginning of Main
1 Interrupt vector
Inclusion of org 0x04 i Imterrupt vector
a macra ® goto Main i Interrupt routine doesn't exist

#include "bank.inc"
Comrmment &

; Beqginning of the main program

Main
BAMKA1 ; Select memory bank 1
Label &—— moviw 0x00

Instruction & movwl TRISB ; Port B pins are output

BANKDO v Select mermory bank 0
Operand = |
moviw 0xFF
movwf PORTE ; Set all ones to port B
Loop goto Loop i Program rermains in the loop

end 3 Mecessary marking the end of a program

Since this data isn’t important for the assembly translator, it is writteorasients It should be noted that a comment always
begins with a semicolon and it can be placed in a new row or it can follow an instruction.

After the opening comment has been written dinective must be included. This is shown in the example above.

In order to function properly, we must define several microcontroller parameters such as: - type of oscillator,
- whether watchdog timer is turned on, and

- whether internal reset circuit is enabled.
All this is defined by the following directive:

_CONFIG _CP_OFF& WDT_OFF&PWRTE_ON&XT_OSC

When all the needed elements have been defined, we can start writing a program.

First, it is necessary to determine an address from which the microcontroller starts, following a power supply starsyprdhis i
0x00).

The address from which the program starts if an interrupt occurs is (org 0x04).

Since this is a simple program, it will be enough to direct the microcontroller to the beginning of a prograngetihvéain"
instruction.

The instructions found in thdain select memory bankl1 (BANK1) in order to access TRISB register, so that port B can be
declared as an output (moviw 0x00, movwf TRISB).

The next step is to select memory bank 0 and place status of logic one on port B (moviw OxFF, movwf PORTB), and thus the main
program is finished.

We need to make another loop where the micro will be held so it doesn't "wander" if an error occurs. For that purposéeone infi
loop is made where the micro is retained while power is connected. The necessary "end" at the end of each program informs the

assembly translator that no more instructions are in the program.
Control directives

4.1 #DEFINE Exchanges one part of text for another

Syntax:
#define<text> [<another text>]

Description:
Each time <text> appears in the program , it will be exchanged for <another text >.

Example:

#define turned_on 1
#define turned_off 0

Similar directives: #UNDEFINE, IFDEF,IFNDEF

4.2 INCLUDE Include an additional file in a program

Syntax:
#include <file_name>
#include "file_name"

Description:

An application of this directive has the effect as though the entire file was copied to a place where the "include" disefttivedw
If the file name is in the square brackets, we are dealing with a system file, and if it is inside quotation marks, viregangtieal
user file. The directive "include" contributes to a better layout of the main program.

Example:

#include <regs.h>
#include "subprog.asm”

4.3 CONSTANT Gives a constant numeric value to the textual designation

Syntax:
Constant <name>=<value>

Description:
Each time that <name> appears in program, it will be replaced with <value>.

Example:
Constant MAXIMUM=100
Constant Length=30

Similar directives: SET, VARIABLE

4.4 VARIABLE Gives a variable numeric value to textual designation

Syntax:
Variable<name>=<value>

Description:
By using this directive, textual designation changes with particular value.
It differs from CONSTANT directive in that after applying the directive, the value of textual designation can be changed.

Example:
variable level=20

variable time=13

Similar directives: SET, CONSTANT

45 SET Defining assembler variable

Syntax:
<name_variable>set<value>

Description:
To the variable <name_variable> is added expression <value>. SET directive is similar to EQU, but with SET directive same of th
variable can be redefined following a definition.

Example:
level set 0
length set 12
level set 45

Similar directives: EQU, VARIABLE

4.6 EQU Defining assembler constant

Syntax:
<name_constant> equ <value>

Description:
To the name of a constant <name_constant> is added value <value>

Example:
five equ 5
six equ 6
seven equ 7

Similar instructions: SET

4.7 ORG Defines an address from which the program is stored in microcontroller memory

Syntax:
<label>org<value>

Description:
This is the most frequently used directive. With the help of this directive we define where some part of a program wi ltieestar
program memory.
Example:
Start org 0x00
moviw OxFF
movwf PORTB

The first two instructions following the first 'org’ directive are stored from address 00, and the other two from address 10.

4.8 END End of program

Syntax:
end

Description:

At the end of each program it is necessary to place 'end’ directive so that assembly translator would know that thereeare no mo
instructions in the program.

Example:

movlw OxFF

movwf PORTB
end

Conditional instructions

49 IF Conditional program branching

Syntax:
if<conditional_term>

Description:
If condition in <conditional_term> was met, part of the program which follows IF directive would be executed. And if it wasn't,
then the part following ELSE or ENDIF directive would be executed.

Example:

if level=100

goto FILL

else

goto DISCHARGE
endif

Similar directives: #ELSE, ENDIF

4.10 ELSE The alternative to 'IF’ program block with conditional terms

Syntax:
Else

Description:
Used with IF directive as an alternative if conditional term is incorrect.

Example:

If time< 50

goto SPEED UP

else goto SLOW DOWN
endif

Similar instructions: ENDIF, IF

4.11 ENDIF End of conditional program section

Syntax:
endif

Description:
Directive is written at the end of a conditional block to inform the assembly translator that it is the end of the cdpiditional

Example:

If level=100
goto LOADS
else

goto UNLOADS
endif

Similar directives: ELSE, IF

4.12 WHILE Execution of program section as long as condition is met

Syntax:
while<condition>

endw

Description:

Program lines between WHILE and ENDW would be executed as long as condition was met. If a condition stopped being valid,
program would continue executing instructions following ENDW line. Number of instructions between WHILE and ENDW can be
100 at the most, and number of executions 256.

Example:
While i<10
i=i+1
endw

4.13 ENDW End of conditional part of the program

Syntax:
endw

Description:
Instruction is written at the end of the conditional WHILE block, so that assembly translator would know that it is thbeend of
conditional block

Example:
while i<10
i=i+1

endw

Similar directives: WHILE

4.14 IFDEF Execution of a part of the program if symbol was defined

Syntax:
ifdef<designation>

Description:
If designation <designation> was previously defined (most commonly by #DEFINE instruction), instructions which follow would be
executed until ELSE or ENDIF directives are not would be reached.

Example:
#define test

ifdef test ;how the test was defined
...... ; instructions from these lines would execute

Similar directives: #DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

4.15 IFNDEF Execution of a part of the program if symbol was defined

Syntax:
ifndef<designation>

Description:
If designation <designation> was not previously defined, or if its definition was erased with directive #UNDEFINE, instructions
which follow would be executed until ELSE or ENDIF directives would be reached.

Example:
#define test

ifndef test ;how the test was undefined
...... ; instructions from these lines would execute

Similar directives: #DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE
Data Directives

4.16 CBLOCK Defining a block for the named constants

Syntax:
Cblock [<term>]

<label>[:<increment>], <label>[:<increment>]......
endc

Description:

Directive is used to give values to named constants. Each following term receives a value greater by one than its precursor. If
<increment> parameter is also given, then value given in <increment> parameter is added to the following constant.

Value of <term> parameter is the starting value. If it is not given, it is considered to be zero.

Example:

Cblock 0x02

First, second, third :first=0x02, second=0x03, third=0x04
endc

cblock 0x02

first : 4, second : 2, third ;first=0x06, second=0x08, third=0x09
endc

Similar directives: ENDC

4.17 ENDC End of constant block definition

Syntax:
endc

Description:
Directive was used at the end of a definition of a block of constants so assembly translator could know that there are no more
constants.

Similar directives: CBLOCK

4.18 DB Defining one byte data

Syntax:
[<label>]db <term> [, <term>,....., <term>]

Description:
Directive reserves a byte in program memory. When there are more terms which need to be assigned a byte each, they will be
assigned one after another.

Example:
db't, Ox0f, 'e’, ’s’, 0x12

Similar instructions: DE, DT

4.19 DE Defining the EEPROM memory byte
Syntax:

[<term>] de <term> [, <term>,....., <term>]

Description:

Directive is used for defining EEPROM memory byte. Even though it was first intended only for EEPROM memory, it could be
used for any other location in any memory.

Example:
org H'2100’
de "Version 1.0", 0

Similar instructions: DB, DT

4.20 DT Defining the data table
Syntax:

[<label>] dt <term> [, <term>,........., <term>]
Description:

Directive generates RETLW series of instructions, one instruction per each term.

Example:
dt "Message", 0
dt first, second, third

Similar directives: DB, DE
Configurational directives

4.21 CONFIG Setting the configurational bits

Syntax:
__config<term> or_ _config<address>,<term>

Description:
Oscillator, watchdog timer application and internal reset circuit are defined. Before using this directive, the procelseor must
defined using PROCESSOR directive.

Example:
_CONFIG _CP_OFF&_WDT_OFF&_PWRTE_ON&_XT_OSC

Similar directives: _IDLOCS, PROCESSOR

4.22 PROCESSOR Defining microcontroller model

Syntax:
Processor <microcontroller_type>

Description:
Instruction sets the type of microcontroller where programming is done.

Example:
processor 16F84

Assembler arithmetic operators

Operator Description Example

-1

++1

OF T A0TTd =553

OV LI d0ddd =| s%eqg

DY I A0 dId =% sTe)g

¢ === 35E[]

£ == 558

o =95 =apul” Alua
Yyibua|"AJdiua =/ 101 Adlua
yibua|"Aduae =, HapulT Adiua
T =- #apul” Adua

T =+ =apul™ AJjua

0 = ®apul™ Alua
2 ==0q) || (215 == u=s|} 4
(0 == 0q)aa (215 == usap §

119 d0d4d3 | sbey = sbey
119" 40dd3 - sbey = sbey
119" d0d4d3 5 sbey = sbey
SauuaT wnu = ®plAaius Ji
saluaT Wwnu == =pl- Adaua g
saluaT Wwnu == ®2plAdaua g
saluaT wnu = =plAdus g
SaQUAT WNU < H=plroAdius gl
Sagua wWnu =< ®KploAdiua i

T <= sBeyg = |ea

T == sbeyg = |ea

2/0 T -303) = U3~ Alus

T + 8 5 Ua| Alus = us| 303

OT 24 Ua| 303 = ua| Adjus
2/, =¢&

O, g =F

S|HELT "Ll D s0] ArAo Ll
S9eL” dlD ybiy saow

ybuaT ., 1-
sbey- = sbey
Cg-elih

958 4 L T + yibua 2
_M.T*_UU_.TH

c+ § ojob

ajduwexg

auo Aq asealia]

auo AgQ juswiaiou)

Hizse pue sl UD HO 8ASNExg
ubiisse pue suq uo MO B0
ubisse pue qpy 21607
ubisse pue 1yl ayl o] aaoly
ufilsse pue Yya| ayl 0l asoly
ufilsse pue a|NpoLwW 1e aplalg
uflsse pue aplalg

ubisse pue &dinw

uflsse pue JoedlQNS

uflsse pue ppyw

jenh3g

Ho 2180

dpw 210

SHQ uo Ho b0

SHG UD M @ASnoxg

SHg uo Qpy woneldadg
jenhba jop

jenh3g

jenba a0 'ueyllassan
ueyldassan

ueyl Jaybiy

jenha o 'ueyy sayfiy

B 2yl o3 Bulaog

ua| ayl o1 Bulaogm
UI12BI1gNS

WO p Py

anpow Agq Buiprapgnsg
Buiprapgns

Bk diniay

a1Aq 1amo] SUInla Y

arhg Jaybiy suiniay
(Wawajdwoa puoaas) uonebap
wawadwon

fuawadwos Bo) O
EHoesq Wiy

BEHaeIg YaT]

Jawnoo welfoid Jo snlelS JUalIng

uoydiasag

A

v A
S wE ot VAAAYVY

=
o3
£B

o -

Jojedado

Files created as a result of program translation
As a result of the process of translating a program written in assembler language we get files like:

® Executing file (Program_Name.HEX)
® Program errors file (Program_Name.ERR)
® |ist file (Program_Name.LST)

The first file contains translated program which was read in microcontroller by programming. Its contents can not give any
information to programmer, so it will not be considered any further.

The second file contains possible errors that were made in the process of writing, and which were noticed by assembly translato
during translation process. Errors can be discovered in a "list" file as well. This file is more suitable though whenpbigama i
viewing the 'list’ file takes longer.

The third file is the most useful to programmer. Much information is contained in it, like information about positioniganstru

and variables in memory, or error signalization.

Example of 'list’ file for the program in this chapter follows. At the top of each page is stated information about tinecfildata

when it was translated, and page number. First column contains an address in program memory where a instruction fran that row i
placed. Second column contains a value of any variable defined by one of the directives : SET, EQU, VARIABLE, CONSTANT or
CBLOCK. Third column is reserved for the form of a translated instruction which PIC is executing. The fourth column contains
assembler instructions and programmer’'s comments. Possible errors will appear between rows following a line in which the error
occured.

pess=addns 0 “p=azodsx T is=hess=u

possoaddns o “pzazodsx O : sEuTwaEn
o csxoxxm

STOT iooxd SPAOM AICWSH WEAHOII

= pesn SpIxom AITomsI s xboTg

cpestma SHoOTH AXomWem astac TTY

II H——————— I OO0z
II ——— —FOOoOOOoI-——3 T 0000
(PEsIn =, —, “EERSO = XK.) dVH HOWSN AT 0HEH
meafoxd = 3o pus =uqo Burdasm SAawssso=pge arzs s=oon
FoOO0
dooT =3 wr s=Awas weaboxg doog ogoh doog es0o0 gos= aooo
=000
g oxod oo S=uwo TTE o=Sf SIa0d B T=ooo sso0 wooo
EX L] o] osooo dd0s so0o0
0O HweEdq Adom=mT Qo3T=5T 0449 "SOLvLsS Ioa o =E8=2T s000
0 HWwEq AIomeT aoSToST OIS SZ000
a=zoo0
andjne =32 suTtd g aIcodr gSTdaL B] LZOO0 ss00 [Rululal
ToDEITITOD
=3x= =SaTq FHWEG oG SITnSTIg S0 eSS Wr Saorr prueasdo wT IsasTtEsg - [Eos] sBesssgg
ooxo @ Taonr =2Zo00 ooos 2000
T Iwreq AXomsor aosTDS L Odd " SOLYLS I=sa b =23 T Foo0
T r=oq AIomsmr SosTsS 2 T S5Z000
WEEIT Tzo0o 5000
LTOO0
T STO00
T HwEq AIOWIW aDSTIE L Odd " SOLYLS I=sa sTOO0
EEELLS TS FTO00
sTooo
T ZTooo
0 e AIOWMSW aDSTIE f Odd " SOLYLS Ioa TTIOOO
EEEL =% 7o g= oTooo
So0000
SO0000
S+HASTA ams = 3 o Tado PR ulalalal ZToo oooo
S+ETVI ams o= 1T e as S0000 TTOO [afalalal
T+ESTE == itk A S50000 aToo [=aTalal
+ooo0o

A N NN N N N S N NN N NN N NN N N N S NS N NN S NN N N N N NN S N NN NN N N s D EOOO0

THANYE PUE OHNTE =0TH= < Zoooo
A S A R A A A A A A A A A A A A A E A A A XX X N X A T ToOoooOo
SoIoEwW AT STTL F W DTIT CHTI=g,, SPT OTITH SZooo
meExBoxd wrem =ga 3o burtuurSsg: =zooo
Tzooo
asT¥=s o Ssop SUTo T ook T XIS oI TTTELT onob [=g={auTs] S08= jJuTalal
Togo=a adnaasgug s FO*X0 Fao STOo00 jgulnlal
Aooo=wn Odia TS oI s STOOO
LTOO0
e afoxd WreEwm Suyo Fo BWITWTE SO =To oo o0f e oaoh ERT=1=1=] SoSz 0000
Toaoma assS=g s ooxo Bao STOOO [=Y=Yula}
meExbhoxsd = o SIaESg FTOOO
STooo
SO0 = HEWH INYLISHOD ZTOOO faYaYula}
TTOOO
oS0 13 % MO EIdmd 0 0F 4400 Lam | v J40 g9 =i oF 37 {ul oToo0 TLas L00Z
S0000
LSTIT SETOoO
oI ‘AR oTowoS L
dTHooAISTH 00" F WoTSI=A “=TFd ASPESH RFATRPWEQS OMI CFSASTIL ZOoooo
LSTIT ToOoooOo
=S=TaTa AoSS=2oo0IJ T WoIT CESFaTA, SPTT OTITHE So0O00
+2d9T d0SsSHo0dd LO0o0
Aoss=ooad =ua I0 worosand TIWoD PUE WOTOELE o= soooo
So000
oraoxasg aEasg Age +o0o00
=GO TAMm FEAITITA =00 TO00Z TS50 0T -= e O- T o Tsasns 0000
mwo oTBoT IO =oEas siqa oo Zoooo
swurd sor Furga=ss pus g axod 3o worgeEsSTTSLaTWr aoy weaboxgs Toooo

HOTWN
ILxHEIL HOdNOos HMHIT Ha0od Logrcdgo falul

At the end of the "list" file there is a table of symbols used in a program. Useful element of 'list’ file is a graph of memory
utilization. At the very end, there is an error statistic as well as the amount of remaining program memory.

Macros

Macros are a very useful element in assembly language. They could briefly be described as "user defined group of instructions
which will enter assembler program where macro was called". It is possible to write a program even without using mactios. But wi
their use written program is much more readable, especially if more programmers are working on the same program together.
Macros have the same purpose as functions of higher program languages.

How to write them:

<label> macro [<argument1>,<argument2>,......<argumentN>]

From the way they were written, we could be seen that macros can accept arguments, too which is also very useful in programming
Whenever argument appears in the body of a macro, it will be replaced with the <argumentN> value.

Example:
Ma_PORTER rmacro ARG1
BaMED ;Select mermory banlk 0
movlw ARG1 Malue from ARG1 argument
;is stored in working register
movwt PORTE svalue from ARG1
; argument placed on port B
endm smacro ended

The above example shows a macro whose purpose is to place on port B the ARG1 argument that was defined while macro was
called. Its use in the program would be limited to writing one line; ON_PORTB 0xFF , and thus we would place value OxFF on
PORTB. In order to use a macro in the program, it is necessary to include macro file in the main program with instrudéon inclu
"macro_name.inc". Contents of a macro is automatically copied onto a place where this instruction was written. This can be best
seen in a previous list file where file with macros "bank.inc" was copied below the line #include"bank.inc"

Previous page Table of contents Next page

© Copyright 2003. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

